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Abstract. The method for calculation of the mean and local magnetic characteristics of ferro-
magnetic metals at finite temperatures, developed by the author and co-workers in previous papers
and based on using the real band structure and spin fluctuations, is applied to Fe, Co and Ni. The
initial parameters of the calculation are the electron density of states and the magnetic moment at
T = 0 for a specific metal. The magnetization, the Curie temperature, the local magnetic moment
and the uniform and local susceptibilities are calculated for ferromagnetic and paramagnetic states.
The results are in agreement with experimental data over a wide range of temperatures.

1. Introduction

It is well known that in the traditional Stoner theory of magnetism [1] the only source of
temperature dependence is the Fermi distribution functionf (ε) = [exp((ε − µ)/T ) + 1]−1.
Since in metalsµ/T � 1, within the framework of this theory, the influence of temperature
is very weak and the observed temperature behaviour, in general, is not explained. Substantial
progress in the explanation of the temperature dependence of the magnetic properties of ferro-
magnetic metals has been observed only in recent years, and it is connected with taking account
of the electron spin-density fluctuations (see, e.g., [2, 3]). Unfortunately, even in the static
local approximation [4, 5] the spin-fluctuation theory (SFT) is very complicated and one has
to introduce a number of significant simplifications in performing actual calculations (see,
e.g., [4–11] and references therein). In particular, the initial density of states (DOS) is always
chosen in a simplified model form, and the Fermi distribution is replaced by a step function.

A simple method for calculation of magnetic characteristics of ferromagnetic metals at
finite temperatures, based on using the real band structure and spin fluctuations in the static local
approximation, was developed in [12]. However, in full accord also with the results of other
spin-fluctuation calculations, based on a static approximation, this method gives a temperature
dependence of the magnetization that is not in sufficient agreement with experimental data,
especially at low temperatures, gives a small effective moment in the Curie–Weiss law etc.
In this connection, in the paper [13], we extended our method to the case of dynamic non-
local fluctuations. This method is based on a self-consistent quadratic approximation to the
free energy of electrons in a random exchange field. The initial parameters of the calculation
are the DOS and the magnetic moment atT = 0 for a specific metal. In the present paper,
detailed quantitative calculations of the temperature dependence of the magnetic properties
of Fe, Co and Ni are made, using the first-principles DOS and various approximations of
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SFT. A comparative investigation of the statics, dynamics and space correlation of the spin
fluctuations in these metals is also given.

Note that in calculating the temperature dependence of the magnetic properties of Fe, Co
and Ni, we use the rigorous SFT complemented by taking into account the real band structure.
In a number of recent studies (see, e.g., [14–16]) the opposite approach is used: rigorous
band calculations of Fe, Co and Ni are complemented by a simplified accounting for spin
fluctuations. So, in the papers [14, 16] the weak-itinerant-ferromagnetism limit of the SFT
[17, 18], which, strictly speaking, is appropriate only for metals with small magnetic moments
and lowTC , is used. In the paper [15] the spin fluctuations (in the paramagnetic region) are
taken into account by replacing the Weiss field with a generalized Onsager cavity field [19],
which corresponds to taking explicit account of the short-range order. Thus, the epithet ‘first-
principles’ in application to the SFT used in [15, 16] means only that the results are obtained
on the basis of first-principles band calculations. As for taking account of spin fluctuations,
this is done in the framework of approximate physical models. We emphasize that all of the
above-mentioned calculations—both single-site [4–11] and long-wavelength ones [14–16]—
are performed in the static approximation, i.e. in these calculations the spin fluctuations are
treated classically.

Finally, in a recent paper [20] the magnetic properties of Ni were calculated rather suc-
cessfully within the Stoner theory. However, in this calculation, the effective band structure
obtained by hybridization of the spin-polarized and paramagnetic band structures was used.
The equation for the effective-band-structure calculation incorporates both the experimentally
observed temperature-dependent magnetization and the zero-temperature experimental value
of the exchange splitting at the point L3. Of course, in the approach of [20], the local magnetic
moment atTC vanishes, but whether this is so for Ni remains debatable (see, e.g., [21]), as
does the assertion that the spin fluctuations in Ni have pronounced itinerant character.

A detailed comparison of our results with the results from references [14–16, 20] is given
in subsection 3.4.

2. Method

Let us give the basic ideas of the method for calculation of the magnetic properties of ferro-
magnetic metals at finite temperatures developed in [12, 13] and present the final formulae
essential for an understanding of the results of our investigation.

The pair interaction of electrons characterized by the interatomic electron repulsion con-
stantu is replaced by the interaction of electrons with the exchange fieldV ≡ (V1, V2, . . .),
Vj = Vj (τ ) · τ , fluctuating in space and in ‘time’τ ∈ [0, 1/T ], wherej is the site number
and theτ are the Pauli matrices. The free energy of the electrons in a fluctuating field is
approximated with the quadratic form

F(V ) =
∑
qnα

1V αqn(u
−1− χαqn)1V α−q−n (1)

where

χαqn ≡ χαq (iωn) = −
N

2
T Sp

∑
km

〈G(V )〉kmτα〈G(V )〉k−q,m−nτα (2)

is the spin susceptibility of non-interacting electrons (in units ofg2µ2
B/2) and1V αqn is the

fluctuation of the exchange field (α = x, y, z) written down in the momentum–‘frequency’
(qωn) representation. The Green function

G(V ) = (z +µ−H0 − V )−1 (3)
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is written down in theqωn representation too. In formulae (1)–(3),z is the energetic variable,
µ the chemical potential,H0 the operator of the kinetic and potential energy of the electrons
in the crystal field,ωn = 2πnT the thermodynamic frequency,N the number of (degenerate)
energy bands, Sp the sum of diagonal elements over the spin projection indexσ = ↑,↓ or±1
and the average is defined by the formulae

〈· · ·〉 =
∫
c(V ) · · · dV c(V ) = exp(−F(V )/T )

∫
exp(−F(V )/T ) dV . (4)

In the single-site quasi-static scattering approximation, in the case of ferromagnets (and
paramagnets), the mean single-site Green function〈G(V )〉ii = g is independent of the site
indexi, is spin (σ ) diagonal and is written as

gσ (ε) =
∫

ν(ε′)
ε − σ 〈Vz〉 −16σ(ε)− ε′ dε′ (5)

whereν(ε) is the non-magnetic DOS (per unit cell, band and spin) and16σ(ε) is the fluctuation
contribution to the self-energy part. For the contribution16σ , in the lowest order of field
fluctuations we obtain the approximate formula

16σ(ε) =
gsσ (ε)〈1V 2

z 〉
1 + 2σ 〈Vz〉gsσ (ε)

+ 2gsσ̄ (ε)〈1V 2
x 〉 (6)

wheregsσ (ε) is determined by expression (5) at16σ(ε) = 0.
We are now faced with the problem of calculating the mean square of the fluctuations of

the on-site exchange field (‘fluctuations’, for short):

ζ α ≡ 〈1V 2
α 〉 =

1

Na

∑
qn

〈|1V αqn|2〉 (7)

whereNa is the number of atoms (unit cells). Taking into account (4) and (1), for the temp-
erature-dependent contribution to the sum overn we have∑

n

′〈|1V αqn|2〉 =
u

2

2

π

∫ ∞
0

1

eε/T − 1
Im

1

1− uχαq (ε + i0)
dε. (8)

We discard the temperature-independent terms, assuming that the zero-point fluctuations are
already taken into account in the initial DOSν(ε) calculated by the density-functional method
and in the effective interaction constantu.

Since the Bose function is strongly localized near zero energy, it is sufficient to know the
behaviour of the susceptibilityχq(ε) for ε → 0 only. Using an expansion of the complex
functionχq(ε) at small thermal energies,ε ∼ T ,

χq(ε) = χq(0) + iϕqε (9)

and the approximation

1

eε/T − 1
'
{
T/ε ε < ε0 = (π2/6)T

0 ε > ε0
(10)

for the Bose function, we calculate the integral in (8) analytically and obtain∑
n

′〈|1V αqn|2〉 =
uT

2λαq

2

π
arctan

uϕαqπ
2T

6λαq
(11)

where

λαq = 1− uχαq (0). (12)
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The real functionsλαq and ϕαq can be calculated using (2), but this calculation is too
cumbersome to be rewarding. We take advantage of reasonable approximations. For the static
susceptibilityχαq (0) we use the approximation

χαq (0) = χα0 (0) +Bαq2 (13)

where the coefficientBα is expressed in terms of the local susceptibility, which is the average
over the wave vectors within the Brillouin zone (BZ):

χL(0) = 1

Na

∑
q

χq(0) ≡ χq(0).

The substitution of (13) into (12) gives

λαq = λα0 + (λαL − λα0)q2
/
q2 (14)

where

λα0 = 1− uχα0 (0) λαL = 1− uχαL(0). (15)

Accordingly, we replace the functionϕαq by its average value:

ϕ αq = ϕαL. (16)

Converting theq-sum in (7) into an integral over the BZ, replaced by a sphere of the same
volume for simplicity, and using (11), (14) and (16) we obtain

ζ α = uT

2λαL

∫ 1

0

1

a2
α + b2

αk
2

2

π
arctan

cα

a2
α + b2

αk
2
3k2 dk 0< a2

α < 1 (17)

where

k = q/qB
a2
α = λα0/λαL b2

α = (1− a2
α)/q

2q2
B cα = uϕαLπ2T/(6λαL)

q2 = 0.6q2
B

andqB is the radius of a sphere with the BZ volume.
Since, in the absence of magnetic anisotropy, any small external magnetic field causes

rotation of the large spontaneous magnetization of the ferromagnet, i.e. the enhanced
susceptibilityχ̃α0 (0) = χα0 (0)/λ

α
0 diverges, we assume thatλα0 = 0 at T < TC . In the

paramagnetic region (T > TC), the static uniform susceptibilityχz0(0) = χx0 (0) is found by
numerical differentiation of the spin momentρz over the magnetic fieldh, with the mean field
〈Vz〉 kept fixed:

χz0(0) = −
∂ρz

∂h
' −ρz(〈Vz〉 + h/2)− ρz(〈Vz〉 − h/2)

h
. (18)

Taking into account (2), for the local susceptibility we have

χαL(z) = −
N

2π
Sp
∫

Im g(ε) τα[g(ε − z) + g(ε + z)]ταf (ε) dε

whence

χxL(0) = −
N

π

∫
Im(g↑g↓)f dε ϕxL =

N

π

∫
Im g↑ Im g↓

(
− ∂f
∂ε

)
dε

χzL(0) =
1

4
(χ
↑
L(0) + χ↓L(0)) χσL (0) = −

2N

π

∫
Im g2

σ f dε

ϕzL =
1

4
(ϕ
↑
L + ϕ↓L) ϕσL =

2N

π

∫
(Im gσ )

2

(
− ∂f
∂ε

)
dε.

(19)
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At fixed values of the fluctuationsζ α, the equations for the mean field〈Vz〉 and chemical
potentialµ are solved:

〈Vz〉 = −uρz ρz = (n↑ − n↓)/2 ne = n↑ + n↓ (20)

where

nσ = N

π

∫
Im gσ (ε) f (ε) dε (21)

is the number of electrons with spin projectionσ andne is the total number of d electrons.
At ζ α = 0, equations (5), (20) and (21) turn into the mean-field-theory equations. This

gives one an opportunity to find atT = 0 the effective constantu from a known magnetic
moment (per atom)m0 = gµBρz(0); after that the equations (5), (6), (17)–(21) make up a
closed system with respect to the four variablesζ x , ζ z, 〈Vz〉 andµ. In various approximations
for the SFT, only formula (17) for the spin fluctuations is modified. In the static local
approximation it takes the form

ζ αSL =
uT

2λαL
(22)

while in the static non-local approximation it is

ζ αSN =
uT

2λαL

∫ 1

0

1

a2
α + b2

αk
2
3k2 dk = uT

2λαL

3

b3
α

(
bα − aα arctan

bα

aα

)
(23)

and in the dynamic local approximation it is

ζ αDL =
uT

2λαL

2

π
arctancα. (24)

Solving the magnetic problem considered at a fixed temperature, we calculate the mean
DOSνσ (ε) = π−1 Im gσ (ε), the magnetizationm = gµBρz, the static uniform susceptibility
χ̃0 = χ0/(1− uχ0), the local magnetic momentmL, the longitudinal (T1) and transverse (T2)
nuclear spin-relaxation times. Comparing the susceptibilityχ̃0 in the paramagnetic region with
the Curie–Weiss lawχ = m2

eff /(3(T −2C)), we determine the value of the effective magnetic
momentmeff and the paramagnetic Curie temperature2C . The local magnetic moment is
calculated from the formulae

mL(T )/m0 = [(〈Vz〉2(T ) + 〈(1V )2〉 − 3uT/2)/〈Vz〉2(0)]1/2 (25)

mL(T )/m0 = [(〈Vz〉2(T ) + 〈(1V )2〉)/〈Vz〉2(0)]1/2 (26)

which are obtained in the functional integral theory (see, e.g., [2]) in the static and dynamic
approximations, respectively. The relaxation times are calculated from the formulae [22]

1

T1T
= c2 Im χ̃ xL(ε0, T )

ε0

1

T2T
= 1

2

1

T1T
+ c

Im χ̃ zL(ε0, T )

ε0

(c is a constant;ε0 ∼ 10−4–10−5 eV) which taking into account the expansion

χαL(ε) = χαL(0) + iϕαLε

take the forms
1

T1T
= c 2ϕxL

(1− uχxL(0))2
1

T2T
= 1

2

1

T1T
+ c

1

4

∑
σ

(
1 +uχσ̄L (0)/2

1− u2χσL (0)χ
σ̄
L (0)/4

)2

ϕσL. (27)

From here, in particular, foru→ 0, i.e. without allowing for enhancement, it follows that
1

T 0
1 T
= c 2ϕxL

1

T 0
2 T
= 1

2

1

T 0
1 T

+ cϕzL. (28)

The details of the calculations of the magnetic characteristics were described in our papers
[12, 13, 23]. In [23] we developed a general numerical method for calculation of the integrals,
involving the Fermi function. A simple method for calculation of the integrals, involving the
derivative of the Fermi function, is given in the appendix.



4876 B I Reser

3. Results and discussion

3.1. Iron

As the initial DOS, we take that of non-magnetic iron, calculated in the local-density approx-
imation (LDA) by the Korringa–Kohn–Rostoker (KKR) method with a self-consistent potential
[24]. The extended ‘tails’ and the constant sp background were eliminated from this DOS, so
that the area under the curve was equal to 10 (the number of d states per atom). This yields a
d band of widthW = 7.42 eV. Then the DOS was slightly smoothed out by convolution with
the Lorentz function of half-width0 = 0.01W to remove non-physical sharp peaks, which
always appear in energy band calculations entirely ignoring single-particle-state damping due
to electron–electron scattering. The DOSs thus obtained, normalized to one state (per atom,
band and spin), are shown in figure 1. The number of d electrons per atom isne = 7.43.
The effective interaction constantu determined from an experimental value of the magnetic
momentm0 = 2.217µB [25] was 1.08 eV.

Figure 1. The DOS of the d band of non-magnetic iron, calculated by the KKR method with a
self-consistent potential ( ), and that smoothed out by convolution with the Lorentz function
of half-width 0 = 0.01 (− − −). The energyε and half-width0 are in units of the bandwidth
W = 7.42 eV. The vertical line indicates the position of the Fermi levelεF .

The results of the calculation of the basic magnetic characteristics of iron in the mean-field
theory and in various approximations of the SFT are represented in table 1 and figures 2–5.
All of the characteristics are expressed in units of their experimental values given in table 2.

As can be seen from table 1, in the mean-field theory the temperature dependence of the
magnetization is very weak and the calculated Curie temperature obtained is almost six times
greater than the observed one.

In the SFT the situation is substantially different. Let us start from the static local approx-
imation (SLA), in which the fluctuations are calculated from formula (22). In the SLA, as
can be seen from figure 2, the Curie temperature is close to the experimentally observed one,
TC = 1.28T expC . However, a noticeable decrease of the magnetization,∼T , is seen over a wide
temperature interval (figure 2), which is due to the fact that spin fluctuations increase linearly
with temperature. In general, the paramagnetic susceptibility follows the Curie–Weiss law, but
the effective magnetic momentmeff is only 0.66 of its experimental value. The paramagnetic
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Table 1. The ferromagnetic (TC ) and paramagnetic (2C ) Curie temperatures, and the effective
magnetic momentmeff in the mean-field theory and in various approximations of the spin-
fluctuation theory.

Spin-fluctuation theory
Magnetic Mean-field

Metal characteristic theory SLA SNA DLA DNA

Fe TC/T
exp

C 5.84 1.28 0.76 2.45 1.49

θC/T
exp

C 5.82 1.24 0.77 2.29 1.45

meff /m
exp

eff 0.86 0.66 0.98 0.80 1.30

Co TC/T
exp

C 3.61 0.55 0.32 1.23 0.63

θC/T
exp

C 3.60 0.54 0.34 1.22 0.68

meff /m
exp

eff 0.84 0.41 0.56 0.58 0.92

Ni TC/T
exp

C 4.04 1.35 0.86 2.80 1.54

θC/T
exp

C 4.03 1.34 0.90 2.78 1.60

meff /m
exp

eff 0.85 0.64 0.86 0.81 1.51

Figure 2. The magnetizationm/m0 (——: calculation;���: experiment [25]), the mean square
of the fluctuations of the on-site exchange field〈1V 2

x 〉 (· · · · ·) and〈1V 2
z 〉 (−−−) in units of the

mean square of the exchange field atT = 0, the inverse paramagnetic susceptibilityχ−1 (− · −)
in units ofkBT

exp

C /µ2
B and the local magnetic momentmL/m0 (− · ·−) of iron, calculated in the

SLA as functions of the reduced temperatureT/TC .

Table 2. Experimental values of fundamental magnetic characteristics of iron, cobalt and nickel.

Fe Co Ni

m0 (µB) [25] 2.217 1.753 0.616

T
exp

C (K) [25] 1044.0 1390.0 631.0

m
exp

eff (µB) [26] 3.13 3.13 1.616
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Figure 3. As figure 2, but calculated in the DNA.

Figure 4. Spin-polarized DOSs of iron in the ferromagnetic (T = 0; solid curves) and paramagnetic
(T = 1.5T expC ; dotted curves) states, calculated in the DNA. The vertical line indicates the position
of the chemical potentialµ.

Curie point2C , obtained by the linear extrapolation ofχ̃−1(T ) to zero, is nearly coincident
with the ferromagnetic one.

In the static non-local approximation (SNA) the magnetization has to decrease faster than
in the SLA. This is connected with the fact that the fluctuationsζ αSN are greater than the fluct-
uationsζ αSL at any temperature. Indeed, taking into account that 06 arctan(b/a) 6 π/2,
06 a2 6 1 andb2 = (1− a2)/0.6, from formula (23) we have

ζSN/ζSL = 3

b3

(
b − a arctan

b

a

)
> 3

b3

(
b − aπ

2

)
> 3

b2
= 3× 0.6

1− a2
> 1.8.

As the calculations show, in the SNA the magnetizationm(T ) decreases too fast.
In the dynamic local approximation (DLA) the fluctuationsζ αDL, calculated using
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Figure 5. The temperature dependence of the longitudinal (T1) and transverse (T2) nuclear spin-
relaxation times of iron, calculated in the DNA using the zero ( ), (−−−) and enhanced (· · · · ·),
(− · −) susceptibilities. (The solid curve coincides with the dashed one.)

formula (24), in contrast, are less than the fluctuationsζ αSL at any temperature (ζDL/ζSL =
(2/π) arctanc 6 1). As the calculations show, in the DLA,m(T ) decreases too slowly.

Only in the dynamic non-local approximation (DNA) do the fluctuationsζ αDN with
temperature increasing first increase slowly (∼T 2), as in the DLA, and then increase quickly,
as in the SNA. For this reason, at low temperatures the magnetization is proportional toT 2,
which provides a good agreement with the experimental curve in the initial region (figure 3).
At the same time, the Curie temperatureT DNC obtained is equal to 1.49T expC . The paramagnetic
susceptibility follows the Curie–Weiss law, but the effective magnetic moment obtained is also
a little greater than the experimental one:meff = 1.3mexpeff . Figure 4 shows the mean DOSs
νσ (ε, T ) in the ferromagnetic (T = 0) and paramagnetic (T = 1.5T expC ) states. In contrast to
the mean-field-theory results, as the temperature increases, the functionsν↑(ε, T )andν↓(ε, T ),
shifting toward each other, become noticeably smoothed. The nuclear spin-relaxation rates
(figure 5) calculated without allowing for the enhancement depend only slightly on temperature,
which is consistent with the known Korringa formula [27] for the relaxation time of the nuclear
spin in simple metals. If the enhancement is taken into account, the values of(T1T )

−1 and
(T2T )

−1 depend strongly on temperature, just as was observed experimentally in [28].

3.2. Cobalt

As the initial DOS, we take that of non-magnetic fcc cobalt from [24]. As for iron, the
constant sp background was eliminated from it. After convoluting it with the Lorentz function
of half-width0 = 0.01W and normalizing it to one d band of unit width, we obtain the DOS
represented in figure 6 by a solid curve. The bandwidth isW = 7.50 eV. The number of
d electrons per atom obtained is equal to 8.47. The electron–electron interaction constant
u = 1.25 eV is determined atT = 0 from the magnetic momentm0 = 1.45µB . We are not
able to find the constantu from the experimental valuemexp0 = 1.753µB because for cobalt
the magnetic momentmexp0 is comparatively large and the Fermi energy is close to the band
edge. To obtainmexp0 it is necessary to move the DOSsν↑(ε) andν↓(ε) so far apart that the
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sumn↑ +n↓ becomes less thanne. In our opinion, the discrepancy betweenν(ε) andmexp0 for
cobalt is connected not with the fact that atT = 0 cobalt has hcp structure, because the DOS
curves of hcp and fcc cobalt are very similar (see figure 5 in [26]), but rather with the fact that,
in addition to the spin magnetic moment of the d electrons,m

exp

0 includes the spin magnetic
moment of the s electrons and the orbital magnetic moment, which, generally speaking, do
not compensate for each other (see, e.g., [26, 29, 30]). The results ofab initio spin-polarized
calculations of Fe, Co and Ni presented in [24, 31] also give evidence in favour of the chosen
valuem0 = 1.45µB . If for iron and nickel the calculated spin magnetic momentsmcal0 are
nearly the same as the experimental ones, then for fcc cobaltmcal0 = 1.54–1.56µB . The value
mcal0 = 1.56µB for fcc Co is also obtained in [32].

Figure 6. Spin-polarized DOSs of cobalt in the ferromagnetic (T = 0) and paramagnetic
(T = 0.64T expC ) states, calculated in the DNA. (The notation is as for figure 4.)

The results of the calculations of the basic magnetic characteristics of cobalt within all of
the above-mentioned approximations are listed in table 1. As for iron, the best ones are for
DNA. As is seen from figure 7, at low temperatures the calculated magnetizationm(T ) is in
good agreement with the experimental one. The paramagnetic susceptibility satisfies the Curie–
Weiss law withmeff = 0.92mexpeff . However, at high temperatures,m(T ) decreases too quickly
and, as a consequence,T = 0.63T expC . On the whole, in spite of some discrepancies with
experiment, the theoretical description of the magnetic properties of cobalt may be considered
to be quite satisfactory.

The mean DOSsνσ (ε, T ) for the ferromagnetic (T = 0) and paramagnetic (T = 0.64T expC )
states are shown in figure 6. As the temperature increases, the curvesνσ (ε, T ) behave as for
iron, but are smoothed more noticeably.

3.3. Nickel

As for cobalt, the initial non-magnetic DOS was taken from [24]. After elimination of
the sp background, convolution with the Lorentz function of half-width0 = 0.01W and
normalization to one d band of unit width, the DOS represented in figure 8 by a solid curve
was obtained. The bandwidth isW = 6.13 eV, and the number of d electrons per atom is
ne = 9.35. The electron–electron interaction constantu = 1.16 eV is determined from the
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Figure 7. The magnetizationm/m0, the mean square of the fluctuations of the on-site exchange
field〈1V 2

x 〉and〈1V 2
z 〉, the inverse paramagnetic susceptibilityχ−1 and the local magnetic moment

mL/m0 of cobalt, calculated in the DNA. (The notation and units are as for figure 2.)

Figure 8. Spin-polarized DOSs of nickel in the ferromagnetic (T = 0) and paramagnetic
(T = 1.55T expC ) states, calculated in the DNA. (The notation is as for figure 4.)

experimental value of the magnetic moment of nickelm
exp

0 = 0.616µB [25].
The results of the calculations of the magnetic properties of nickel in various approaches

are listed in table 1. The quantitative characteristics are similar to those for iron. On the whole,
the best results are obtained in the DNA. As is seen from figure 9, in this approximation the
spin fluctuations have the proper temperature behaviour and, as a consequence, the shape of the
magnetization curve is in agreement with the experimental one. Note that in the ferromagnetic
region, in iron the transverse fluctuations dominate, while in nickel the longitudinal fluctuations
dominate and in cobalt the intermediate situation is realized: the transverse and longitudinal
fluctuations are close in value (see figures 3, 7 and 9).
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3.4. Comparison with the results of other work

Now let us compare our results with the results of recent work on calculations of the magnetic
properties of Fe, Co and Ni [14–16, 20] that also used the real (not model) band structure. Some
results of these studies are in better agreement with experiment than our results. However,
good agreement, as a rule, is achieved only for some magnetic characteristics. In the paper
[14], for all three metals a good agreement with experiment for the Curie temperatureTC is
obtained. In the paper [15], for Fe good agreement with experiment is obtained for the Curie
temperature:TC = 1015 K, but not for the effective magnetic moment:meff = 1.96µB ; for
Ni, in contrast, the Curie temperature is almost one third smaller than the experimental one:
TC = 450 K, but the effective moment is fairly close to the experimental one:meff = 1.21µB .
A similar situation is observed in the paper [16] too: the Curie temperature for Fe agrees well
with experiment, whereas for Co and Ni there is a discrepancy of about 30%. Moreover,
for all three metals the slope of the inverse paramagnetic susceptibility is almost twice as
large as the experimental one. Finally, in the paper [20] a reasonable value of the Curie
temperature for Ni has been obtained in the Stoner approximation with the usage, however,
of additional experimental information. At the same time, the temperature behaviour of the
calculated magnetization curve remained static-like. As for our results for the local magnetic
moment in the paramagnetic region, they agree with the results of all of the above-mentioned
spin-fluctuation calculations, except for those of [15], where the local moment of Ni above
TC appeared to be zero. Naturally, the same value of the local moment was obtained in the
Stoner-like calculation in [20] too. However, as noted in the introduction, this result remains
debatable.

Figure 9. The magnetizationm/m0, the mean square of the fluctuations of the on-site exchange
field〈1V 2

x 〉and〈1V 2
z 〉, the inverse paramagnetic susceptibilityχ−1 and the local magnetic moment

mL/m0 of nickel, calculated in the DNA. (The notation and units are as for figure 2.)

From the DOS obtained in the band calculation, we eliminate the sp background and
nonphysical sharp peaks. The sensitivity of the final results to these operations can be seen
from comparison of our present results for Fe with those obtained in [13]. In the paper [13]
the constant sp background was eliminated from the DOS given over the whole calculation
interval, 15.2 eV. As a result, a DOS of widthW = 13.4 eV was obtained, which was then
smoothed out with0 = 0.01W = 0.134 eV. In the present paper, the constant sp background
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is eliminated from a DOS from which the fine extended ‘tails’ have already been cut off. (Of
course, in both papers the remaining DOS is normalized to the total number of d states.) As a
result, a DOS of widthW = 7.42 eV and with0 = 0.01W = 0.0742 eV is obtained, i.e. in the
present paper the DOS is smoothed only half as much as in [13]. Consequently, the numerical
values of several magnetic characteristics (TC ,2C ,meff etc) were somewhat changed, but the
general temperature behaviour of all of the functions considered and the relation between the
results of the calculations for various approximations of the SFT remained unchanged.

4. Conclusions

The numerical calculations for Fe, Co and Ni lend support to the validity of the method
developed in [12, 13] for the description of the temperature dependence of the magnetic
properties of ferromagnetic metals. From the four approximations of the SFT considered, the
DNA turned out to be the best approximation for all three metals. The static approximation
overestimates the contribution due to spin fluctuations and yields an incorrect temperature
dependence of the magnetization and susceptibility (see figure 2). Only simultaneous con-
sideration of the dynamics and non-locality (dependence on the wave vector) of the spin
fluctuations ensures agreement of the theory with experiment. Note that the point in question
is the proper (semiquantitative) description of the temperature behaviour of the magnetic
properties on the whole. It is clear that in the framework of the approximations used for
the electron–electron interaction (the Hubbard model, the single-site approximation etc), one
should not expect quantitative coincidence—for example ofT calC with T expC . So, electron–
electron interaction beyond the LDA at zero temperature is characterized by just one constant,
u, and the dependence of the magnetic properties uponu is fairly strong [33]. In the framework
of the approximations used, one should also not expect a quantitative description of the
temperature dependence of the magnetic properties in the critical region (see the theory for the
critical region in, e.g., [34]).

Detailed investigations of local magnetic characteristics of Fe, Co and Ni, in particular the
local magnetic moment and nuclear spin-relaxation times, (i) in the framework of the proposed
approach and (ii) using the mean single-site Green function in the same manner as in [22], will
be considered in a future paper.

Finally, note that in the alloys of ferromagnetic metals, which we intend to investigate in
the future, the calculations by the proposed method will mostly be of predictive character. To
carry out these calculations, one needs to know only the DOS and the magnetic moment at
zero temperature.
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Appendix. Calculation of the integrals involving the derivative of the Fermi function

Consider the integral

I =
∫
g(ε)

(
− ∂f (ε)

∂ε

)
dε (A.1)
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whereg(ε) is an arbitrary function, vanishing forε → ±∞, andf (ε) is the Fermi function.
Let us represent the functionf (ε) as a sum of the step function

2(ε − µ) =


1 whenε < µ

1/2 whenε = µ
0 whenε > µ

and the function

f2(ε) = sgn(ε − µ) [e|ε−µ|/T + 1
]−1 = −T ∂

∂ε
ln(1 + e−|ε−µ|/T ). (A.2)

Substitutingf (ε) = 2(ε − µ) + f2(ε) into (A.1), we split the integralI into two integrals:

I =
∫
g(ε)

(
− ∂2(ε − µ)

∂ε

)
dε +

∫
g(ε)

(
− ∂f2(ε)

∂ε

)
dε ≡ I1 + I2.

For the first integral we immediately obtain

I1 =
∫
g(ε)δ(ε − µ) dε = g(µ). (A.3)

For the second one we first use integration by parts:

I2 =
∫
∂g(ε)

∂ε
f2(ε) dε. (A.4)

Then, using a linear interpolation, we transform the tabular functiong(ε) into a piecewise-
linear function:

g(ε) =
{
ai(ε − εi) + bi εi 6 ε 6 εi+1

0 ε < ε1 andε > εn+1
(A.5)

whereai = (bi+1 − bi)/(εi+1 − εi), bi = g(εi), i = 1, . . . , n + 1, andn is the number of
intervals. The substitution of (A.5) and (A.2) into (A.4) yields

I2 =
n∑
i=1

ai

∫ εi+1

εi

f2(ε) dε = T
n∑
i=1

ai
[
ln(1 + e−|εi−µ|/T )− ln(1 + e−|εi+1−µ|/T )

]
. (A.6)

Taking into account (A.3) and (A.6), for the initial integral (A.1) we obtain

I = g(µ) + T
∑
i

′
ai
[
ln(1 + e−|εi−µ|/T )− ln(1 + e−|εi+1−µ|/T )

]
. (A.7)

The prime indicates that the sum includes only those terms for which|εi − µ| 6 t ln βT ,
whereβ is the base andt the precision of the floating-point system of the specific computer
(see, e.g., [35]).
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